Subsystems of Second Order Arithmetic Second Edition

نویسندگان

  • Stephen G. Simpson
  • Michael Glanzberg
  • Michael Rathjen
  • Thomas Scanlon
  • Richard A. Shore
  • STEPHEN G. SIMPSON
چکیده

Foundations of mathematics is the study of the most basic concepts and logical structure of mathematics, with an eye to the unity of human knowledge. Almost all of the problems studied in this book are motivated by an overriding foundational question: What are the appropriate axioms for mathematics? Through a series of case studies, these axioms are examined to prove particular theorems in coremathematical areas such as algebra, analysis, and topology, focusing on the language of second order arithmetic, the weakest language rich enough to express and develop the bulk of mathematics. In many cases, if a mathematical theorem is proved from appropriately weak set existence axioms, then the axioms will be logically equivalent to the theorem. Furthermore, only a few specific set existence axioms arise repeatedly in this context, which in turn correspond to classical foundational programs. This is the theme of reverse mathematics, which dominates the first half of the book. The second part focuses on models of these and other subsystems of second order arithmetic. Additional results are presented in an appendix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The second geometric-arithmetic index for trees and unicyclic graphs

Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...

متن کامل

Second order theories with ordinals and elementary comprehension

We study elementary second order extensions of the theory ID 1 of non-iterated inductive deenitions and the theory PA of Peano arithmetic with ordinals. We determine the exact proof-theoretic strength of those extensions and their natural subsystems, and we relate them to subsystems of analysis with arithmetic comprehension plus 1 1 comprehension and bar induction without set parameters.

متن کامل

Formalizing Forcing Arguments in Subsystems of Second-Order Arithmetic

We show that certain model-theoretic forcing arguments involving subsystems of second-order arithmetic can be formalized in the base theory, thereby converting them to effective proof-theoretic arguments. We use this method to sharpen conservation theorems of Harrington and Brown-Simpson, giving an effective proof that WKL+0 is conservative over RCA0 with no significant increase in the lengths ...

متن کامل

Borel Quasi-Orderings in Subsystems of Second-Order Arithmetic

Marcone, A., Bore1 quasi-orderings in subsystems of second-order arithmetic, Annals of Pure and Applied Logic 54 (1991) 265-291. We study the provability in subsystems of second-order arithmetic of two theorems of Harrington and Shelah [6] about Bore1 quasi-orderings of the reals. These theorems turn out to be provable in AT&, thus giving further evidence to the observation that AT&, is the min...

متن کامل

A review of Subsystems of Second Order Arithmetic

This is the first book to appear on “reverse mathematics”. The book provides an excellent introduction to the area and is packed with some interesting theorems and uses of mathematical logic. The theme of reverse mathematics is to take a theorem of mathematics and determine the set existence axioms needed to prove the chosen theorem. The goal is to show that the theorem is actually equivalent t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006